Abstract

Blossom-end rot (BER) of tomato ( Lycopersicon esculentum) fruits is considered to be a physiological disorder caused by calcium deficiency. We attempted to clarify the localization of calcium in the pericarp cells and the ultrastructural changes during the development of BER. Calcium precipitates were observed as electron-dense deposits by an antimonate precipitation method. Some calcium precipitates were localized in the cytosol, nucleus, plastids, and vacuoles at an early developmental stage of normal fruits. Calcium precipitates were increased markedly on the plasma membrane during the rapid-fruit-growth stage compared with their level at the early stage. Cell collapse occurred in the water-soaked region at the rapid-fruit-growth stage in BER fruits. There were no visible calcium precipitates on the traces of plasma membrane near the cell wall of the collapsed cells. The amount of calcium precipitates on plasma membranes near collapsed cells was smaller than that in the cells of normal fruits and normal parts of BER fruits, and the amount on cells near collapsed cells was small. The amount of calcium precipitates on the plasma membranes increased as the distance from collapsed cells increased. On the other hand, calcium precipitates were visible normally in the cytosol, organelles, and vacuoles and even traces of them in collapsed cells. The distribution pattern of the calcium precipitates on the plasma membrane was thus considerably different between normal and BER fruits. On the basis of these observations, we concluded that calcium deficiency in plasma membranes caused cell collapses in BER tomato fruits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call