Abstract

In the uterus, bradykinin is a potent inducer of smooth muscle contraction, which is mediated by the bradykinin B2 receptor subtype. However, little is known about the distribution or regulation of this receptor in this tissue. The aim of this study was to localize the B2 receptor in the uterus and determine whether the levels of this receptor were altered during the estrous cycle and modulated by estrogen and/or progesterone in ovariectomized rats. At diestrus, uterine B2 receptors were localized to both the circular and longitudinal smooth muscle layers of the myometrium, the endometrial stroma, the glandular epithelium, and the layer subjacent to the luminal epithelium. B2 receptor levels in both myometrium and endometrium were lowest during early proestrus, when estrogen levels are low, whereas myometrial B2 receptor protein and messenger RNA levels were highest during late proestrous, when estrogen levels peak. Similar findings were observed for the estrogen-supplemented group after ovariectomy, with progesterone appearing to inhibit the estrogen-induced rise in bradykinin B2 receptor density in estrogen/progesterone-treated animals. Using in vitro receptor autoradiography employing the specific B2 receptor antagonist analog, HPP-HOE140, immunostaining with specific antipeptide antibodies generated against the B2 receptor, and in situ hybridization using a specific bradykinin B2 receptor riboprobe, our findings show a discrete distribution of the bradykinin B2 receptor throughout the different layers of the uterus and suggest that bradykinin B2 receptor levels in the rat uterus are regulated by estrogen, and possibly progesterone, in both myometrium and endometrium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call