Abstract
Ablation treatment of ventricular arrhythmias can be facilitated by pre-procedure planning aided by electrocardiographic inverse solution, which can help to localize the origin of arrhythmia. Our aim was to improve localization accuracy of the inverse solution by using a novel Bayesian approach. The inverse problem of electrocardiography was solved by reconstructing epicardial potentials from 120 body-surface electrocardiograms and from patient-specific geometry of the heart and torso for four patients suffering from scar-related ventricular tachycardia who underwent epicardial catheter mapping, which included pace-mapping. Simulations using dipole sources in patient-specific geometry were also performed. The proposed method, using dynamic spatio-temporal apriori constraints of the solution, was compared with classical Tikhonov methods based on fixed constraints. The mean localization error of the proposed method for all available pacing sites (n=78) was significantly smaller than that achieved by Tikhonov methods; specifically, the localization accuracy for pacing in the normal tissue (n=17) was [Formula: see text]mm (mean ± SD) versus [Formula: see text]mm reported in the previous study using the same clinical data and Tikhonov regularization. Simulation experiments further supported these clinical findings. The promising results of invivo and in silico experiments presented in this study provide a strong incentive to pursuing further investigation of data-driven Bayesian methods in solving the electrocardiographic inverse problem. The proposed approach to localizing origin of ventricular activation sequence may have important applications in pre-procedure assessment of arrhythmias and in guiding their ablation treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.