Abstract
Trifluoperazine (TFP) was shown to interact with the cyanogen bromide fragment 9 (CB9) (residues 84-135) of rabbit skeletal troponin C and with a synthetic peptide representing the N-terminal region of CB9. The phenothiazine did not affect the calcium binding property of CB9 as observed by proton magnetic resonance and circular dichroism spectroscopies. The calculated calcium binding constants for CB9 in the presence and absence of trifluoperazine were identical (KCa2+ = 1.3 X 10(5) M-1). Localization of the trifluoperazine binding site was achieved by analyzing the 1H NMR spectrum of CB9 and of a synthetic fragment corresponding to residues 90-104 of CB9. Drug-induced shifting and broadening of the ring protons of phenylalanine residues and the methyl resonances of alanine, leucine, and isoleucine residues suggest that the segment 95-102 is in close proximity to the phenothiazine aromatic region. The neighboring negative side chains in the peptide sequence also suggest that the single positive charge present on the piperazine nitrogens of trifluoperazine may interact with them and sterically block a region of interaction of calmodulin (CaM) and troponin C (TnC) with modulated proteins such as phosphodiesterase. Primary sequence analysis of CaM and troponin C reveals that a homologous hydrophobic region to site 3 is also found in the N-terminal region of site 1 of both calcium binding proteins. Binding of TFP to CB9 occurs both in the presence and absence of calcium since the hydrophobic region in these small fragments is completely accessible to TFP whether calcium is present or not. The dissociation constant of the drug to apoCB9 (8 microM) was obtained by ellipticity measurements at 222 nm and was comparable to the 5 microM value obtained by Levin and Weiss [Levin, R. M., & Weiss, B. (1978) Biochim. Biophys. Acta 540, 197-204] for calcium-saturated rabbit skeletal troponin C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.