Abstract

To account for the phenomenon of quantum decoherence of a macroscopic object, such as the localization and disappearance of interference, we invoke the adiabatic quantum entanglement between its collective states(such as that of the center-of-mass (C.M)) and its inner states based on our recent investigation. Under the adiabatic limit that motion of C.M dose not excite the transition of inner states, it is shown that the wave function of the macroscopic object can be written as an entangled state with correlation between adiabatic inner states and quasi-classical motion configurations of the C.M. Since the adiabatic inner states are factorized with respect to each parts composing the macroscopic object, this adiabatic separation can induce the quantum decoherence. This observation thus provides us with a possible solution to the Schroedinger cat paradox

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.