Abstract
The final step in the biosynthesis of testosterone is reduction of androstenedione by the enzyme 17β-hydroxysteroid dehydrogenase/17-ketosteroid reductase (17βHSD/17KSR). In this study, we have examined expression of the four known reductive isoforms of 17βHSD/17KSR (types 1, 3, 5, and 7) in the developing mouse testis and have determined changes in the localization of isoform expression and testosterone secretion during development. Using RT-PCR isoforms 1, 3, and 7 were shown to be expressed in the seminiferous tubules of neonatal testis, whereas isoforms 3 and 7 were expressed in the interstitial tissue of the adult testis. The type 7 isoform is unlikely to be involved in androgen synthesis and further study concentrated on the type 3 isoform. Developmentally, isoform type 3 was expressed in the seminiferous tubules up to day 10, showed little or no expression on day 20 and from day 30 was confined to the interstitial tissue. In situ hybridization confirmed that the type 3 isoform was expressed only in the seminiferous tubules in fetal testes and in the interstitial tissue in adult testes. In accordance with the localization of enzyme messenger RNA expression 17-ketosteroid reductase enzyme activity was very low in isolated interstitial tissue from neonatal testes while interstitial tissue from adult testes showed high activity. Seminiferous tubules from both neonatal and adult testes showed high levels of enzyme activity. The major androgen secreted by the interstitial tissue of prepubertal animals was androstenedione up to day 20 while 5α-androstanediol and/or testosterone were the major androgens secreted from day 30 onwards. These results show that fetal Leydig cells do not express significant levels of a reductive isoform of 17βHSD/17KSR and that androstenedione is the major androgen secreted by these cells. Production of testosterone up until puberty is dependent upon 17βHSD/17KSR activity in the seminiferous tubules—a“ two cell” requirement for testosterone synthesis. Expression of the 17βHSD/17KSR type 3 isoform (the main reductive isoform in the testis) declines in the seminiferous tubules before puberty but then reappears in the developing adult Leydig cell population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.