Abstract

AbstractBlood/vessel wall cell interactions depend, in part, on the expression of adhesion receptors on cell surfaces, such as expression of the vitronectin receptor (VnR) on the apical surface of endothelial cells (ECs) for platelet/EC adhesion. However, it is unclear how receptor expression is regulated from within cells. In previous studies, we found that ECs metabolize linoleic acid into the lipoxygenase monohydroxide, 13-hydroxyoctadecadienoic acid (13-HODE), and that the intracellular level of 13-HODE correlates inversely with VnR expression and platelet adhesion to the EC apical surface. In this study, we determined the physical associations of 13-HODE and VnR in unstimulated and stimulated ECs, ie, at times when ECs were and were not adhesive for specific ligands and platelets, using double antibody immunofluorescent staining techniques and binding assays. 13-HODE and the VnR were colocalized within unstimulated ECs. When ECs were stimulated, 13-HODE was no longer detectable, either in or outside the ECs, and the VnR was detected on the apical surface of the ECs. These changes were paralleled by increased vitronectin binding and increased platelet adhesion to the ECs. We suggest that colocalization of 13-HODE with VnR reflects a 13-HODE/VnR interaction, confining the VnR in a nonadhesive form inside unstimulated ECs, and, as a result, the ECs are nonadhesive. When the ECs are stimulated, 13-HODE and VnR dissociate, allowing the VnR to relocate on the EC surface, where the VnR undergoes a conformational change resulting in increased EC adhesivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.