Abstract

A combined approach of 2D high-resolution localization light microscopy and statistical methods is presented to infer structural features and density fluctuations at the nuclear nanoscale. Hallmarks of nuclear nanostructure are found on the scale below 100 nm for both human fibroblast and HeLa cells. Mechanical measures were extracted as a quantitative tool from the histone density fluctuations inside the cell to obtain structural fluctuations on the scale of several micrometers. Results show that different mechanisms of expression of the same nuclear protein type lead to significantly different patterns on the nanoscale and to pronounced differences in the detected compressibility of chromatin. The observed fluctuations, including the experimental evidence for dynamic looping, are consistent with a recently proposed chromatin model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.