Abstract

The mathematic models of the disturbance sensor based on phase-sensitive optical time-domain reflectometry (OTDR) are established. On the basis of the models, the localization mechanisms of the conventional location techniques for phase-sensitive OTDR are simulated. The simulation results indicate that the frequency characteristics of the backscattered signal at disturbance region are different from other regions. According to the results, a novel location method relied on power spectrum analysis is described. The experiment is then conducted over a monitored length of 9km with a spatial resolution of 100m, which demonstrates that the described location approach can significantly enhanced signal-to-noise ratio (SNR) to 19.4dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.