Abstract

In this paper, we investigate the localization properties of optical waves in disordered systems with multifractal scattering potentials. In particular, we apply the localization landscape theory to the classical Helmholtz operator and, without solving the associated eigenproblem, show accurate predictions of localized eigenmodes for one- and two-dimensional multifractal structures. Finally, we design and fabricate nanoperforated photonic membranes in silicon nitride (SiN) and image directly their multifractal modes using leaky-mode spectroscopy in the visible spectral range. The measured data demonstrate optical resonances with multiscale intensity fluctuations in good qualitative agreement with numerical simulations. The proposed approach provides a convenient strategy to design multifractal photonic membranes, enabling rapid exploration of extended scattering structures with tailored disorder for enhanced light-matter interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call