Abstract

We investigate the issue of eigenfunction localization in random fractal lattices embedded in two dimensional Euclidean space. In the system of our interest, there is no diagonal disorder -- the disorder arises from random connectivity of non-uniformly distributed lattice sites only. By adding or removing links between lattice sites, we change the spectral dimension of a lattice but keep the fractional Hausdorff dimension fixed. From the analysis of energy level statistics obtained via direct diagonalization of finite systems, we observe that eigenfunction localization strongly depends on the spectral dimension. Conversely, we show that localization properties of the system do not change significantly while we alter the Hausdorff dimension. In addition, for low spectral dimensions, we observe superlocalization resonances and a formation of an energy gap around the center of the spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call