Abstract

The main topic of this paper is motivated by a localization problem in cellular networks. Given a graph G we want to localize a walking agent by checking his distance to as few vertices as possible. The model we introduce is based on a pursuit graph game that resembles the famous Cops and Robbers game. It can be considered as a game theoretic variant of the metric dimension of a graph. We provide upper bounds on the related graph invariant ζ(G), defined as the least number of cops needed to localize the robber on a graph G, for several classes of graphs (trees, bipartite graphs, etc.). Our main result is that, surprisingly, there exists planar graphs of treewidth 2 and unbounded ζ(G). On a positive side, we prove that ζ(G) is bounded by the pathwidth of G. We then show that the algorithmic problem of determining ζ(G) is NP-hard in graphs with diameter at most 2. Finally, we show that at most one cop can approximate (arbitrary close) the location of the robber in the Euclidean plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.