Abstract
Localizing a cloud of points from noisy measurements of a subset of pairwise distances has applications in various areas, such as sensor network localization and reconstruction of protein conformations from NMR measurements. In [1], Drineas et al. proposed a natural two-stage approach, named SVD-MDS, for this purpose. This approach consists of a low-rank matrix completion algorithm, named SVD-Reconstruct, to estimate random missing distances, and the classic multidimensional scaling (MDS) method to estimate the positions of nodes. In this paper, we present a detailed analysis for this method. More specifically, we first establish error bounds for Euclidean distance matrix (EDM) completion in both expectation and tail forms. Utilizing these results, we then derive the error bound for the recovered positions of nodes. In order to assess the performance of SVD-Reconstruct, we present the minimax lower bound of the zero-diagonal, symmetric, low-rank matrix completion problem by Fano's method. This result reveals that when the noise level is low, the SVD-Reconstruct approach for Euclidean distance matrix completion is suboptimal in the minimax sense; when the noise level is high, SVD-Reconstruct can achieve the optimal rate up to a constant factor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.