Abstract
We reconsider Chern–Simons gauge theory on a Seifert manifold $M$, which is the total space of a non-trivial circle bundle over a Riemann surface $\Sigma$, possibly with orbifold points. As shown in previous work with Witten, the path integral technique of non-abelian localization can be used to express the partition function of Chern–Simons theory in terms of the equivariant cohomology of the moduli space of flat connections on $M$. Here we extend this result to apply to the expectation values of Wilson loop operators that wrap the circle fibers of $M$ over $\Sigma$. Under localization, such a Wilson loop operator reduces naturally to the Chern character of an associated universal bundle over the moduli space. Along the way, we demonstrate that the stationary-phase approximation to the Wilson loop path integral is exact for torus knots in $S^3$, an observation made empirically by Lawrence and Rozansky prior to this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.