Abstract

We consider unitary analogs of one-dimensional Anderson models on $$l^2(\mathbb{Z})$$ defined by the product U ω=D ω S where S is a deterministic unitary and D ω is a diagonal matrix of i.i.d. random phases. The operator S is an absolutely continuous band matrix which depends on a parameter controlling the size of its off-diagonal elements. We prove that the spectrum of U ω is pure point almost surely for all values of the parameter of S. We provide similar results for unitary operators defined on $$l^2(\mathbb{N})$$ together with an application to orthogonal polynomials on the unit circle. We get almost sure localization for polynomials characterized by Verblunsky coefficients of constant modulus and correlated random phases

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.