Abstract

The random-dimer model is probably the most popular model for a one-dimensional disordered system where correlations are responsible for delocalization of the wave functions. This is the primary model used to justify the insulator-metal transition in conducting polymers and in DNA. However, for such systems, the localization-delocalization regimes have only been observed by deeply modifying the system itself, including the correlation function of the disordered potential. In this article, we propose to use an ultracold atomic mixture to cross the transition simply by externally tuning the interspecies interactions, and without modifying the impurity correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.