Abstract
In the existing <i>millimeter-wave</i> (mmWave) wireless positioning systems, the method based on <i>sparse Bayesian learning</i> (SBL) uses the channel sparsity to estimate the parameters required for positioning, such as <i>angle of arrival</i> (AOA) and time delay, but most existing SBL solutions only consider the angle sparsity. In this paper, we consider the joint sparsity of the angle domain and time delay domain to propose an improved SBL algorithm by using a new two-dimensional adaptive grid refinement method in the SBL framework. This algorithm solves the grid mismatch problem caused by the fixed grid in the traditional SBL method, and reduces the algorithm complexity of the <i>off-grid SBL</i> (OGSBL) algorithm. We also obtain the <i>Cramér-Rao bound</i> (CRB) of AOA, time delay and position estimation based on the mmWave multipath signals to analyze the estimation errors. Simulation results show that the performance of the proposed algorithm is better than existing algorithms and can approach CRB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.