Abstract

We study localization and charge dynamics in a monochromatically driven one-dimensional Anderson insulator focussing on the low-frequency, strong-driving regime. We study this problem using a mapping of the Floquet Hamiltonian to a hopping problem with correlated disorder in one higher harmonic-space dimension. We show that (i) resonances in this model correspond to \emph{adiabatic} Landau-Zener (LZ) transitions that occur due to level crossings between lattice sites over the course of dynamics; (ii) the proliferation of these resonances leads to dynamics that \emph{appear} diffusive over a single drive cycle, but the system always remains localized; (iii) actual charge transport occurs over many drive cycles due to slow dephasing between these LZ orbits and is logarithmic-in-time, with a crucial role being played by far-off Mott-like resonances; and (iv) applying a spatially-varying random phase to the drive tends to decrease localization, suggestive of weak-localization physics. We derive the conditions for the strong driving regime, determining the parametric dependencies of the size of Floquet eigenstates, and time-scales associated with the dynamics, and corroborate the findings using both numerical scaling collapses and analytical arguments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.