Abstract

In augmented reality applications it is essential to know the position and orientation of the user to correctly register virtual 3D content in the user’s field of view. For this purpose, visual tracking through simultaneous localization and mapping (SLAM) is often used. However, when applied to the commonly occurring situation where the users are mostly stationary, many methods presented in previous research have two key limitations. First, SLAM techniques alone do not address the problem of global localization with respect to prior models of the environment. Global localization is essential in many applications where multiple users are expected to track within a shared space, such as spectators at a sporting event. Secondly, these methods often assume significant translational movement to accurately reconstruct and track from a local model of the environment, causing challenges for many stationary applications. In this paper, we extend recent research on Spherical Localization and Tracking to support relocalization after tracking failure, as well as global localization in large shared environments, and optimize the method for operation on mobile hardware. We also evaluate various state-of-the-art localization approaches, the robustness of our visual tracking method, and demonstrate the effectiveness of our system in real-life scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.