Abstract

Alcaligenes eutrophus strains H 16, B 19, G 27 and N9A contained two different hydrogenases. One enzyme catalyzed the reduction of NAD by hydrogen and was strictly localized in the soluble cell fraction. While the second enzyme was found to be particulate and unable to react with NAD. All other tested strains, Alcaligenes paradoxus SA 29, Pseudomonas facilis, P. palleronii RH 2, Pseudomonas sp. strain GA 3, Paracoccus denitrificans, Aquaspirillum autotrophicum SA 32, and Corynebacterium autotrophicum 14g and 7C contained only a single enzyme exclusively bound to membranes. This was established using fractional centrifugation, indicator enzyme systems, gently methods of cell disintegration and discontinuous sucrose density gradient centrifugation. In cell-free extracts obtained by rough disruption (sonication) of cells, hydrogenase was associated to particles of different size and sedimentation velocity. A partial solubilization of hydrogenase caused by sonication was observed with P. facilis. Without exception, the particulate hydrogenases were found (1) to be unable to reduce pyridine nucleotides, and (2) to reduce methylene blue at an extremely high activity. The eminent reaction rate of 34 micronmoles H2 oxidized per min and mg protein has been determined in particle suspensions of Pseudomonas sp. strain GA 3. All hydrogenases were stable during storage under hydrogen atmosphere, except the soluble enzyme for A. eutrophus H 16 which was shown to be more stable under aerobic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.