Abstract

In this work we present a technique for isolating the gamma-ray and neutron energy spectra from multiple radioactive sources localized in an image. Image reconstruction algorithms for radiation scatter cameras typically focus on improving image quality. However, with scatter cameras being developed for non-proliferation applications, there is a need for not only source localization but also source identification. This work outlines a modified stochastic origin ensembles algorithm that provides localized spectra for all pixels in the image. We demonstrated the technique by performing three experiments with a dual-particle imager that measured various gamma-ray and neutron sources simultaneously. We showed that we could isolate the peaks from 22Na and 137Cs and that the energy resolution is maintained in the isolated spectra. To evaluate the spectral isolation of neutrons, a 252Cf source and a PuBe source were measured simultaneously and the reconstruction showed that the isolated PuBe spectrum had a higher average energy and a greater fraction of neutrons at higher energies than the 252Cf. Finally, spectrum isolation was used for an experiment with weapons grade plutonium, 252Cf, and AmBe. The resulting neutron and gamma-ray spectra showed the expected characteristics that could then be used to identify the sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.