Abstract

We compute the exact all-orders perturbative expansion for the partition function of 2d SU(2) Yang-Mills theory on closed surfaces around higher critical points of the classical action. We demonstrate that the expansion can be derived from the lattice partition function for all genera using a distributional generalization of the Poisson summation formula. We then recompute the expansion directly, using a stationary phase version of supersymmetric localization. The result of localization is a novel effective action which is itself a distribution rather than a function of the supersymmetric moduli. We comment on possible applications to A-twisted models and their analogs in higher dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.