Abstract
Recombination-active extended defects in semiconductors frequently occur at a low density which makes their structural and chemical analysis by transmission electron microscopy (TEM) techniques virtually impossible. Here an approach is described that uses in situ electron beam induced current (EBIC) in a focused ion beam machine to localize such defects for TEM lamella preparation. As an example, a defect complex occurring in block-cast multicrystalline silicon with a density of less than 10(4) cm(-3) has been prepared and analyzed by TEM. The chemical sensitivity of the technique is estimated to be about 10(13) atoms cm(-2) which is comparable to synchrotron-based x-ray techniques. The localization accuracy of the TEM lamella is shown to be better than 50 nm when low-energy EBIC is used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.