Abstract

In mammals, the synaptosomal-associated protein of 25 kDa, SNAP-25, is generally thought to play a role in synaptic exocytosis of neuronal messengers. Using a polyclonal antiserum against rat SNAP-25, we have shown the presence of a SNAP-25-like protein in the brain of the South-African clawed toad Xenopus laevis by Western blotting and immunocytochemistry. Xenopus SNAP-25 is ubiquitously present throughout the brain, where its distribution in various identified neuronal perikarya and axon tracts is described. Western blot analysis and immunocytochemistry also demonstrated the presence of SNAP-25 in the neural, intermediate and distal lobes of the pituitary gland. Intensity line plots of confocal laser scanning microscope images of isolated melanotropes indicated that SNAP-25 is produced and processed in the rough endoplasmatic reticulum and Golgi apparatus, and is associated with the plasma membrane. Immunoelectron microscopy substantiated the idea that SNAP-25 is present in the plasma membrane but also showed a close association of SNAP-25 with the bounding membrane of peptide-containing secretory granules in both the neurohemal axon terminals in the neural lobe and the endocrine melanotropes in the intermediate lobe. Quantitative Western blotting revealed that adapting Xenopus to a dark background has a clear stimulatory effect on the expression of SNAP-25 in the neural lobe and in the melanotrope cells. This background light intensity-dependent stimulation of SNAP-25 expression was confirmed by the demonstration of increased immunofluorescence recorded by confocal laser scanning microscopy of individual melanotropes of black background-adapted toads. On the basis of this study on Xenopus laevis, we conclude that SNAP-25 (i) plays a substantial role in the secretion of a wide variety of neuronal messengers; (ii) functions in the central nervous system but also in neurohormonal and endocrine systems; (iii) acts at the plasma membrane but possibly also at the membrane of synaptic vesicles and peptide-containing secretory granules; (iv) acts not only locally (as in synapses), but at various sites of the plasma membrane (as in the endocrine melanotrope cell); and (v) can be upregulated in its expression by physiological stimuli that increase the extent of the molecular machinery involved in exocytosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.