Abstract

During heart morphogenesis, epicardial cells undergo epithelial-mesenchymal transition giving origin to a population of epicardially derived cells that play a crucial role in the development of most cardiac cell lineages. Considering the hypothesis that epithelial-mesenchymal transition of epicardial mesothelium can generate cardiac primitive cells in the adult heart, we have examined in vivo and in vitro the epicardium and subepicardium of normal human adult hearts and of pathological hearts from patients with chronic ischemic heart failure for the presence of CD117-positive cells with epithelial and mesenchymal markers expression. The number of CD117-positive cells increased significantly in the subepicardium of pathological hearts and sloped down towards myocardium, remaining still elevated with respect to normal hearts. While cells with typical epithelial proteins expression formed an intact layer on the surface of the normal hearts, CD117-positive cells were localized mainly in the subepicardium and expressed mesenchymal markers in the pathological hearts. Epithelial-mesenchymal transition, induced in vitro by several growth factors known to accumulate in the ischemic myocardium, gave origin to epicardially-derived cells with CD117 expression. These data support the hypothesis of epicardial origin of cardiac primitive cells in the adult human heart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call