Abstract

Ataxia is primarily considered to originate from the cerebellum. However, it can manifest without obvious cerebellar damage, such as in anterior circulation stroke, leaving the mechanisms of ataxia unclear. The aim of this study was to investigate whether stroke lesions causing limb ataxia localize to a common brain network. In this prospective cohort study, adult patients with new-onset stroke with visible lesions on CT or MRI from Turku University Hospital, Finland, were clinically examined (1) after their stroke while still admitted to the hospital (baseline) and (2) 4 months later (follow-up) to assess limb ataxia. Lesion locations and their functional connectivity, computed using openly available data from 1,000 healthy volunteers from the Brain Genome Superstruct Project, were compared voxel-by-voxel across the whole brain between patients with and without ataxia, using voxel-based lesion-symptom mapping and lesion network mapping. The findings were confirmed in an independent stroke patient cohort with identical clinical assessments. One hundred ninety-seven patients (mean age 67.2 years, 39%female) were included in this study. At baseline, 35 patients (68.3 years, 34%female) had and 162 (67.0 years, 40%female) did not have new-onset acute limb ataxia. At follow-up, additional 4 patients had developed late-onset limb ataxia, totalling to 39 patients (68.6 years, 36%female) with limb ataxia at any point. One hundred eighteen patients (66.2 years, 40%female) did not have ataxia at any point (n = 40 with missing follow-up data). Lesions in 54% of the patients with acute limb ataxia were located outside the cerebellum and cerebellar peduncles, and we did not find an association between specific lesion locations and ataxia. Lesions causing acute limb ataxia, however, were connected to a common network centered on the intermediate zone cerebellum and cerebellar peduncles (lesion connectivity in patients with vs without acute limb ataxia, pFWE < 0.05). The results were similar when comparing patients with and without ataxia at any point, and when excluding lesions in the cerebellum and cerebellar peduncles (pFWE < 0.05). The findings were confirmed in the independent stroke dataset (n = 96), demonstrating an OR of 2.27 (95% CI 1.32-3.91) for limb ataxia per standard deviation increase in limb ataxia network damage score. Lesions causing limb ataxia occur in heterogeneous locations but localize to a common brain network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.