Abstract

Vasoactive peptides regulate renal medullary microcirculation and tubular function, but the localization of their receptors and mechanisms of actions are currently unknown. Using electron microscopic autoradiography, we have mapped the receptors for angiotensin II (Ang II [AT1 and AT2]), endothelin (ET(A) and ET(B)), and bradykinin (B2) in the rat renal medulla. Although these peptide receptors show distinct vascular and tubular distributions, they overlap strikingly in renomedullary interstitial cells (RMICs) of the inner stripe and the papilla. Using reverse transcription-polymerase chain reaction (RT-PCR) and Southern analysis, mRNAs for AT1A, ET(A), and B2 receptors were detected in cultured adult RMICs. Ang II increases intracellular inositol 1,4,5-triphosphate (IP3) and [Ca2+]i and stimulates [3H]thymidine incorporation and extracellular matrix (ECM) synthesis via AT1A receptors. Endothelin and bradykinin also stimulate cell proliferation and ECM synthesis in RMICs through ET(A) and B2 receptors, respectively, but the actions of endothelin are modulated by concurrent nitric oxide production. By contrast, AT2 receptor mRNA was detected only in embryonic RMICs, in which Ang II inhibits cell proliferation through this receptor. These results suggest that multiple vasoactive peptides may interact with RMICs to exert endocrine and/or paracrine influences on renal medullary microcirculation and tubular function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.