Abstract

The recent cloning of the ACTH receptor (ACTH-R) gene allows investigation of the tissue localization and relative abundance of ACTH-R mRNA in normal and neoplastic adrenal cortex. Using in situ hybridization (ISH) we studied the expression of ACTH-R mRNA in four adult adrenals of brain-dead patients, two cortisol-producing adenomas (CPA), three aldosterone-producing adenomas (APA), one non-functional adenoma (NFA), and three carcinomas. The results were compared with the mRNA expression of key steroidogenic enzymes and of the glucocorticoid receptor (GR) mRNA using Northern blotting. In adult adrenals, messenger RNA encoding ACTH-R was localized in all three zones of the adrenal cortex, in accordance with the stimulatory role of ACTH on mineralocorticoid, glucocorticoid and adrenal androgen secretion. In comparison, expression of side-chain cleavage enzyme (P450scc) showed a similar tissue distribution with mRNA abundance in all three zones, whereas 17-hydroxylase/17-20 lyase (P450c17) mRNA expression was only detected in the zona fasciculata and zona reticularis. All CPAs and APAs expressed significant levels of ACTH-R mRNA whereas an NFA showed low expression of ACTH-R mRNA. Two of three adrenocortical carcinomas expressed ACTH-R mRNA. Northern analysis using dot blot was employed to quantify ACTH-R and GR mRNA expression and confirmed the ISH data: ACTH-R mRNA expression was high in CPAs (275 and 195% vs 100 +/- 25% in adult adrenals), APAs (127, 200 and 221%) and two carcinomas (99 and 132%), but low in the NFA (7%) and in an androgen secreting carcinoma (16%). GR mRNA expression was high in the NFA (195%) and in two of three carcinomas (93, 188, 227%). We conclude that ACTH-R mRNA is upregulated in functional adenomas by yet unidentified mechanisms. The tissue distribution of ACTH-R and P450 enzyme mRNA expression is highly variable in neoplastic adrenals and does not allow a clear differentiation between benign and malignant tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.