Abstract

In the field of rehabilitation robotics, a mobile personal robot represents an attractive solution, especially in economic terms in comparison with a desktop workstation. A manipulator arm mounted on a mobile robot can facilitate the restoration of the disabled user's manipulative function. In order both to encourage the person to participate in the task at hand and to be cost effective, close human-machine cooperation is essential. The person controls the robot via a remote station and develops strategies to successfully carry out a mission. The main problems encountered by the person during the execution of a mission are electing to change modes, and the mode transition itself. We have examined two aspects of this cooperation: 1) information exchange between human and machine for decision-making and 2) giving to operators complementary and redundant modes to command the system. An experiment has been conducted to study these two aspects. This paper focuses on the control of robot movements in an indoor environment and especially on localization parameters, human-like robot behavior, and the value of proposing complementary control modes to the operator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.