Abstract

Two novel genes, rdpA and sdpA, encoding the enantiospecific alpha-ketoglutarate dependent dioxygenases catalyzing R,S-dichlorprop cleavage in Delftia acidovorans MC1 were identified. Significant similarities to other known genes were not detected, but their deduced amino acid sequences were similar to those of other alpha-ketoglutarate dioxygenases. RdpA showed 35% identity with TauD of Pseudomonas aeruginosa, and SdpA showed 37% identity with TfdA of Ralstonia eutropha JMP134. The functionally important amino acid sequence motif HX(D/E)X(23-26)(T/S)X(114-183)HX(10-13)R/K, which is highly conserved in group II alpha-ketoglutarate-dependent dioxygenases, was present in both dichlorprop-cleaving enzymes. Transposon mutagenesis of rdpA inactivated R-dichlorprop cleavage, indicating that it was a single-copy gene. Both rdpA and sdpA were located on the plasmid pMC1 that also carries the lower pathway genes. Sequencing of a 25.8-kb fragment showed that the dioxygenase genes were separated by a 13.6-kb region mainly comprising a Tn501-like transposon. Furthermore, two copies of a sequence similar to IS91-like elements were identified. Hybridization studies comparing the wild-type plasmid and that of the mutant unable to cleave dichlorprop showed that rdpA and sdpA were deleted, whereas the lower pathway genes were unaffected, and that deletion may be caused by genetic rearrangements of the IS91-like elements. Two other dichlorprop-degrading bacterial strains, Rhodoferax sp. strain P230 and Sphingobium herbicidovorans MH, were shown to carry rdpA genes of high similarity to rdpA from strain MC1, but sdpA was not detected. This suggested that rdpA gene products are involved in the degradation of R-dichlorprop in these strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.