Abstract

Percoll density-gradient separation, combined with peanut lectin agglutinin (PNA) binding and magnetic bead separation, was used to separate dispersed fish gill cells into sub-populations. Functional characterization of each of the sub-populations was performed to determine which displayed acid-activated phenamil- and bafilomycin-sensitive Na(+) uptake. Analysis of the mechanism(s) of (22)Na(+) influx was performed in control and acid-activated (addition of 10 mmoll(-1) proprionic acid) cells using a variety of Na(+) transport inhibitors (ouabain, phenamil, HOE-694 and bumetanide) and a V-type ATPase inhibitor (bafilomycin). We found that cells migrating to a 1.03-1.05 g ml(-1) Percoll interface [pavement cells (PVCs)] possessed the lowest rates of Na(+) uptake and that influx was unchanged during either bafilomycin (10 nmoll(-1)) treatment or internal acidification with addition of proprionic acid (10 mmoll(-1)). Mitochondria-rich (MR) cells that migrated to the 1.05-1.09 g ml(-1) interface of the Percoll gradient demonstrated acidification-activated bafilomycin and phenamil-sensitive Na(+) influx. Further separation of the MR fraction into PNA(+) and PNA(-) fractions using magnetic separation demonstrated that only the PNA(-) cells (alpha-MR cells) demonstrated phenamil-and bafilomycin-sensitive acid-activated (22)Na(+) uptake. We confirm the coupling of a V-type H(+)-ATPase with phenamil-sensitive Na(+) uptake activity and conclude that high-density alpha-MR cells function in branchial Na(+) uptake in freshwater fish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.