Abstract

To examine the mechanisms of degradation owing to liberated organic acid from polymer materials in crystalline silicon (c-Si) photovoltaic (PV) modules, we attempt to characterize the degraded site in a PV cell exposed to acetic acid vapor by means of ac impedance spectroscopy. The location was electrically determined at the interface between the front electrodes and emitter of a silicon wafer. Concerning this interface, two distinct electric characteristics were identified as follows: 1) the contact in this interface can rectify the current in the same direction as the p-n junction of a p-type PV cell, and 2) any linear relationship in the Mott-Schottky plot was not confirmed in the capacitance component placed in this interface, unlike in the case of that located in the p-n junction. From these characteristics, the inclusion of a layer with a voltage-independent capacitance in this interface, an inhomogeneous depth profile of impurities within the near-surface of the n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">+</sup> -Si layer of this contact, and/or the existence of peculiar surface/interface states in this interface were deduced. It is concluded that a crucial electrical feature involved in the degradation of c-Si PV cells/modules under acidic conditions is verified with regard to these characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.