Abstract

We address the properties of wavepacket localization-delocalization transition (LDT) in fractional dimensions with a quasi-periodic lattice. The LDT point, which is generally determined by the competition between two sub-lattices comprising the quasi-periodic lattice, turns out to be inversely proportional to the Lévy index. Surprisingly, we find that, in the presence of weak structural disorder, anti-Anderson localization occurs, i.e., the introduced disorder results in an increasing of the size of the linear modes. Inclusion of a weak focusing nonlinearity is shown to improve localization. The propagation simulation achieves excellent agreement with the linear and nonlinear eigenmode analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.