Abstract
We show that the center of a flat graded deformation of a standard Koszul algebra behaves in many ways like the torus-equivariant cohomology ring of an algebraic variety with finite fixed-point set. In particular, the center acts by characters on the deformed standard modules, providing a "localization map." We construct a universal graded deformation, and show that the spectrum of its center is supported on a certain arrangement of hyperplanes which is orthogonal to the arrangement coming the Koszul dual algebra. This is an algebraic version of a duality discovered by Goresky and MacPherson between the equivariant cohomology rings of partial flag varieties and Springer fibers; we recover and generalize their result by showing that the center of the universal deformation for the ring governing a block of parabolic category $\mathcal{O}$ for $\mathfrak{gl}_n$ is isomorphic to the equivariant cohomology of a Spaltenstein variety. We also identify the center of the deformed version of the "category $\mathcal{O}$" of a hyperplane arrangement (defined by the authors in a previous paper) with the equivariant cohomology of a hypertoric variety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.