Abstract
Target tracking (TT) with non-linear kalman filtering (NLKF) has recently become a very popular research area, particularly in the field of marine engineering and air traffic control. Contemporary NLKF algorithms have been very effective, in particular, with extensions and merging with a reduced root mean square error (RMSE) value. However, there are a number of issues that confront NLKF approaches, notably weakness in robustness, convergence speed, and tracking accuracy due to large initial error and weak observability. Furthermore, NLKF algorithms significantly results in error for high non-linear systems (NLS) because of the propagation of uncertainty. Again, there is a problem of estimating future states as a result of white noise. To handle these issues, the authors propose a novel non-linear filtering algorithm, called locality-sensitive NLKF (LSNLKF) that incorporates locality-sensitive adaptors into the structure of an integrated NLKF. They are the extended kalman filter (EKF) and the unscented kalman filter (UKF) for TT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Distributed Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.