Abstract

In the vertebrate retina, the rod bipolar cells make reciprocal synapses with amacrine cells at the axon terminal. Amacrine cells may perform a fine control of the transmitter release from rod bipolar cells by means of GABAergic synapses acting on different types of GABA receptors. To clarify this possibility GABA-induced currents were recorded by the patch-clamp whole cell method in rod bipolar cells enzymatically dissociated from the mouse retina. All cells tested showed a desensitising chloride-sensitive GABA-induced current. When GABA 30 microM was applied in presence of 100 microM biccuculine, a blocker of the GABA(A) receptors, a slow-desensitising component of the current still remains. This current was blocked when GABA 30 microM was applied in presence of 100 microM 3-aminopropylphosphonic acid, an antagonist of the GABA(C) receptors. The current mediated by GABA(C) receptors showed an EC50 of less that 5 microM; the ionic current through the GABA(A) receptor showed an EC50 of ca. 30 microM. Two pieces of evidence demonstrated that the GABA(C)-mediated current was localised at the axon terminal of rod bipolar cells: (1) cells lacking the axon terminal only showed the biccuculine-sensitive GABA-induced current; and (2) after mechanical section of the axon terminal, bipolar cells lost the slow-desensitising component of the GABA-induced current. We conclude that the rod bipolar cells express two types of ionotropic GABA receptors, and that the high sensitive GABA(C) receptors are mainly localised at the level of the axon terminal and therefore may contribute to the modulation of the transmitter release from the rod bipolar cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.