Abstract
Phosphoinositides (PI) are essential components of eukaryotic membranes and function in a large number of signaling processes. While lipid second messengers are well studied in mammals and yeast, their role in filamentous fungi is poorly understood. We used fluorescent PI-binding molecular probes to localize the phosphorylated phosphatidylinositol species PI[3]P, PI[3,5]P2, PI[4]P and PI[4,5]P2 in hyphae of the endophyte Epichloë festucae in axenic culture and during interaction with its grass host Lolium perenne. We also analysed the roles of the phosphatidylinositol-4-phosphate 5-kinase MssD and the predicted phosphatidylinositol-3,4,5-triphosphate 3-phosphatase TepA, a homolog of the mammalian tumour suppressor protein PTEN. Deletion of tepA in E. festucae and in the root-infecting tomato pathogen Fusarium oxysporum had no impact on growth in culture or the host interaction phenotype. However, this mutation did enable the detection of PI[3,4,5]P3 in septa and mycelium of E. festucae and showed that TepA is required for chemotropism in F. oxysporum. The identification of PI[3,4,5]P3 in ΔtepA strains suggests that filamentous fungi are able to generate PI[3,4,5]P3 and that fungal PTEN homologs are functional lipid phosphatases. The F. oxysporum chemotropism defect suggests a conserved role of PTEN homologs in chemotaxis across protists, fungi and mammals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.