Abstract

This study explored the feasibility of using immunofluorescence labelling in conjunction with confocal laser scanning microscopy (CLSM) for detection of common fungal colonisers of unseasoned radiata pine in New Zealand. Wood sections infected with Ophiostoma piceae were treated with monoclonal antibody IF3 (1), and then Oregon green 514 goat anti-mouse IgG, a fluorescent secondary antibody. Additional wood sections infected with other Ophiostoma spp., Sphaeropsis sapinea, Leptographium procerum, Trichoderma sp. and Phlebiopsis gigantea were treated similarly to determine whether the antibody was specific to O. piceae or was recognising other fungal species. Sections were examined using phase contrast and fluorescence light microscopy prior to CLSM. Immunolabelled fungal hyphae showed relatively weak fluorescence compared to the strong autofluorescence of wood cell walls and extractives. Labelled hyphae of O. piceae were detected in wood using CLSM but not with ordinary fluorescence microscopy. This is because CLSM has stronger illumination power and superior imaging ability compared with ordinary fluorescence microscopy. The monoclonal antibody did not cross-react with the other Ophiostoma species. However, non-specific antibody binding was observed with L. procerum and Trichoderma species. Furthermore, cell walls of L. procerum showed strong autofluorescence with optical properties similar to wood extractives when examined prior to incubation with the monoclonal and secondary antibody, therefore cross-reactivity tests were inconclusive for Leptographium and Trichoderma species. The current investigation demonstrated that CLSM provides possibilities for future investigations on in situ interactions of common radiata pine fungal colonisers, with one another and with wood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call