Abstract

Recently, we proposed a method for the local detection of quantum correlations on the basis of local measurements and state tomography at different instances in time [Phys. Rev. Lett. 107, 180402 (2011)]. The method allows for the detection of quantum discord in bipartite systems when access is restricted to only one of the subsystems. Here, we elaborate the details of this method and provide applications to specific physical models. In particular, we discuss the performance of the scheme for generic complex systems by investigating thermal equilibrium states corresponding to randomly generated Hamiltonians. Moreover, we formulate an ergodicity-like hypothesis which links the time average to the analytically obtained average over the group of unitary operators equipped with the Haar measure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.