Abstract

Scans without evidence of dopaminergic deficit (SWEDD) patients are often misdiagnosed with Parkinson’s disease (PD) but have normal dopamine transporter scans. We hypothesised that white matter tracts associated with motor and cognition functions may be affected differently by SWEDD and PD. Automatically annotated fibre clustering (AAFC) is a novel clustering method based on diffusion magnetic resonance imaging (dMRI) tractography that enables highly robust reconstruction of white matter tracts that are composed of corresponding clusters. This study aimed to investigate the white matter properties in the subdivisions of white matter tracts among SWEDD and PD groups. We applied AAFC to identify white matter tracts related to motion and cognition functions in the dataset consisting of SWEDD (n = 22), PD (n = 30) and normal control (NC) (n = 30). Then, we resampled 200 nodes along fibres of cluster, and the diffusion metric values corresponding to each node were calculated and used for comparison. Compared with NC, PD showed significant difference (p < 0.05) in two clusters in thalamo-frontal (TF), one cluster in thalamo-parietal (TP) and one cluster in thalamo-occipital (TO), whereas SWEDD presented no significant difference. Three clusters in cingulum bundle (CB) commonly exhibited significant differences in PD versus SWEDD and NC versus SWEDD. The support vector machine classifier achieved high accuracies in PD-NC, PD-SWEDD and NC-SWEDD classifications. This outcome validated these local white matter differences were useful to separate the three groups. These results suggest that PD exerts more significant effects on thalamo tracts than SWEDD, and unique microstructural changes occur in CB tract in SWEDD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call