Abstract
<p style='text-indent:20px;'>We consider the Cauchy problem for the spatially inhomogeneous non-cutoff Boltzmann equation with polynomially decaying initial data in the velocity variable. We establish short-time existence for any initial data with this decay in a fifth order Sobolev space by working in a mixed <inline-formula><tex-math id="M1">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ L^\infty $\end{document}</tex-math></inline-formula> space that allows to compensate for potential moment generation and obtaining new estimates on the collision operator that are well-adapted to this space. Our results improve the range of parameters for which the Boltzmann equation is well-posed in this decay regime, as well as relax the restrictions on the initial regularity. As an application, we can combine our existence result with the recent conditional regularity estimates of Imbert-Silvestre (arXiv:1909.12729 [math.AP]) to conclude solutions can be continued for as long as the mass, energy, and entropy densities remain under control. This continuation criterion was previously only available in the restricted range of parameters of previous well-posedness results for polynomially decaying initial data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.