Abstract

<p>In this paper, we study an initial boundary value problem of a nonlinear fractional diffusion equation with the Caputo-type modification of the Erdélyi-Kober fractional derivative. The main tools are the Picard-iteration method, fixed point principle, Mittag-Leffler function, and the embedding theorem between Hilbert scales spaces and Lebesgue spaces. Through careful analysis and precise calculations, the priori estimates of the solution and the smooth effects of the Erdélyi-Kober operator are demonstrated, and then the local existence, uniqueness, and stability of the solution of the nonlinear fractional diffusion equation are established, where the nonlinear source function satisfies the Lipschitz condition or has a gradient nonlinearity.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.