Abstract

The Vlasov-Poisson-Boltzmann equation is a classical equation governing the dynamics of charged particles with the electric force being self-imposed. We consider the system in a convex domain with the Cercignani-Lampis boundary condition. We construct a uniqueness local-in-time solution based on an $L^\infty$-estimate and $W^{1,p}$-estimate. In particular, we develop a new iteration scheme along the characteristic with the Cercignani-Lampis boundary for the $L^\infty$-estimate, and an intrinsic decomposition of boundary integral for $W^{1,p}$-estimate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.