Abstract
We consider a viscous fluid of finite depth below the air, occupying a three-dimensional domain bounded below by a fixed solid boundary and above by a free moving boundary. The domain is allowed to have a horizontal cross-section that is either periodic or infinite in extent. The fluid dynamics are governed by the gravity-driven incompressible Navier–Stokes equations, and the effect of surface tension is neglected on the free surface. This paper is the first in a series of three on the global well-posedness and decay of the viscous surface wave problem without surface tension. Here we develop a local well-posedness theory for the equations in the framework of the nonlinear energy method, which is based on the natural energy structure of the problem. Our proof involves several novel techniques, including: energy estimates in a “geometric” reformulation of the equations, a well-posedness theory of the linearized Navier–Stokes equations in moving domains, and a time-dependent functional framework, which couples to a Galerkin method with a time-dependent basis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.