Abstract
<abstract><p>This paper proves the well-posedness of locally smooth solutions to the free boundary value problem for the 1D degenerate drift diffusion equation. At the free boundary, the drift diffusion equation becomes a degenerate hyperbolic-Poisson coupled equation. We apply the Hardy's inequality and weighted Sobolev spaces to construct the appropriate a priori estimates, overcome the degeneracy of the system and successfully establish the existence of solutions in the Lagrangian coordinates.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.