Abstract

In this paper we prove the local well-posedness (LWP) for the 3D compressible Euler equations describing the motion of a liquid in an unbounded initial domain with moving boundary. The liquid is under the influence of gravity but without surface tension, and it is not assumed to be irrotational. We apply the tangential smoothing method introduced in Coutand-Shkoller [10,11] to construct the approximation system with energy estimates uniform in the smooth parameter. It should be emphasized that, when doing the nonlinear a priori estimates, we need neither the higher order wave equation of the pressure and delicate elliptic estimates, nor the higher regularity on the flow-map or initial vorticity. Instead, we adapt the Alinhac's good unknowns to the estimates of full spatial derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.