Abstract

The propagation of an interfacial crack along a heterogeneous weak plane of a transparent Plexiglas block is followed using a high resolution fast camera. We show that the fracture front dynamics is governed by local and irregular avalanches with very large size and velocity fluctuations. We characterize the intermittent dynamics observed, i.e., the local pinnings and depinnings of the crack front by measuring the local waiting time fluctuations along the crack front during its propagation. The deduced local front line velocity distribution exhibits a power law behavior, P(v) alpha v-eta with eta=2.55+/-0.15, for velocities v larger than the average front speed <v>. The burst size distribution is also a power law, P(S) alpha S-gamma with gamma=1.7+/-0.1. Above a characteristic length scale of disorder Ld approximately 15 microm, the avalanche clusters become anisotropic providing an estimate of the roughness exponent of the crack front line, H=0.66.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call