Abstract

The record of metamorphic conditions is commonly highly heterogeneous in spatially close rocks of different composition and rheology. The well-studied Cima di Gagnone area in the Central Alps represents such an example, as relatively small, 1– to 100 s-meter scale, ultrahigh–pressure and high–temperature ultramafic lenses are enveloped within amphibolite–facies metasediments. We present new field observations, microstructural and petrological analyses, and thermodynamic modelling results on these metasediments, showing that these rocks generally experienced medium pressure and medium temperature conditions of 1.0–1.2 GPa and 640–700 °C, followed by a retrograde stage around 0.6–0.8 GPa and 600–675 °C. However, a few samples from the immediate proximity of the ultramafic lenses record significantly higher P–T conditions of 1.3–1.7 GPa and 750–850 °C, approaching the high pressure and high temperature conditions of the ultramafic bodies (1.5–3.1 GPa, 650–850 °C). Mineral/bulk chemistry changes during growth of new mineral phases hint to local melt/fluid interaction (i.e., metasomatism) between metasediments and ultramafics during the high temperature deformation. Preliminary U-Pb LA–ICP–MS dating suggests that zircon grains from the metasomatic reaction zone have been fully re–equilibrated during the early stage of Alpine exhumation (~36 Ma), while the large part of the metasediments records only pre–Alpine ages. We finally recast these new data into the regional P–T–t–D paths and discuss the consequences of these findings for understanding the exhumation processes of HP rocks. We found different local equilibria (ΔP up to 2 GPa; ΔT up to 160 °C) that cannot be explained simply by retrograde metamorphism or by tectonic amalgamation. Rather, our work suggests a significant role of deformation in producing variable pressure and temperature record within the rocks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.