Abstract

We present a systematic study of the interpolation of local uniform convexity and Kadec‐Klee type properties in K‐interpolation spaces. Using properties of the K‐functional of J.Peetre, our approach is based on a detailed analysis of properties of a Banach couple and properties of a K‐interpolation functional which guarantee that a given K‐interpolation space is locally uniformly convex, or has a Kadec‐Klee property. A central motivation for our study lies in the observation that classical renorming theorems of Kadec and of Davis, Ghoussoub and Lindenstrauss have an interpolation nature. As a partiular by‐product of our study, we show that the theorem of Kadec itself, that each separable Banach space admits an equivalent locally uniformly convex norm, follows directly from our approach.

Highlights

  • ØÓÙ ÔÖÓÔ ÖØÝÌ ÒÓÖÑ ÓÒ × × ØÓ ÓÖ Ö ÓÒØ ÒÙÓÙ× Ò ÓÒÐÝ ÛÒÚÖÒ 3⁄4 Ò 1⁄2 3⁄4 × Ø ×¬ × Ò Ò 1⁄4 ̧ Ø ÓÐÐÓÛ× Ø Ø Ò 1⁄4oÏÖÑÖØØ × ÓÖ Ö ÓÒØ ÒÙÓÙ× ÒÓÖÑ Ø Ò ¡ × ØÓÙ ÒÓÖÑo Á 3⁄4 Ä1⁄4 ́Ì μ Ø Ó Ö × Ò Ö ÖÖ Ò Ñ ÒØ £ × ¬Ò Ý × ØØ Ò.

  • ÓÖ ÐÐ Ø 1⁄4o Ì Ö ÖÖ Ò Ñ ÒØ £ × Ö Ø1 ÓÒØ ÒÙÓÙ× ̧ Ö × Ò Ò × ÕÙ Ñ ×ÙÖ ÐÛØÒØ × Ò× Ø Ø.

  • ÓÖ ÐÐ Ø 1⁄4o Á × Ö ÖÖ Ò Ñ ÒØ1 ÒÚ Ö ÒØ Ò ÙÒ Ø ÓÒ ×Ô ÓÒÌ μ Ø Ò Û Û ÐÐ × Ý Ø Ø × ÙÐÐÝ ×ÝÑÑ ØÖ Ò ÓÒÐÝ.

Read more

Summary

ØÓÙ ÔÖÓÔ ÖØÝ

Ì ÒÓÖÑ ÓÒ × × ØÓ ÓÖ Ö ÓÒØ ÒÙÓÙ× Ò ÓÒÐÝ ÛÒÚÖÒ 3⁄4 Ò 1⁄2 3⁄4 × Ø ×¬ × Ò Ò 1⁄4 ̧ Ø ÓÐÐÓÛ× Ø Ø Ò 1⁄4oÏÖÑÖØØ × ÓÖ Ö ÓÒØ ÒÙÓÙ× ÒÓÖÑ Ø Ò ¡ × ØÓÙ ÒÓÖÑo Á 3⁄4 Ä1⁄4 ́Ì μ Ø Ó Ö × Ò Ö ÖÖ Ò Ñ ÒØ £ × ¬Ò Ý × ØØ Ò. ÓÖ ÐÐ Ø 1⁄4o Ì Ö ÖÖ Ò Ñ ÒØ £ × Ö Ø1 ÓÒØ ÒÙÓÙ× ̧ Ö × Ò Ò × ÕÙ Ñ ×ÙÖ ÐÛØÒØ × Ò× Ø Ø. ÓÖ ÐÐ Ø 1⁄4o Á × Ö ÖÖ Ò Ñ ÒØ1 ÒÚ Ö ÒØ Ò ÙÒ Ø ÓÒ ×Ô ÓÒÌ μ Ø Ò Û Û ÐÐ × Ý Ø Ø × ÙÐÐÝ ×ÝÑÑ ØÖ Ò ÓÒÐÝ. ÑÔÐÝ 3⁄4 Ò o ÁØ × Û ÐÐ1 ÒÓÛÒ Ö ×ÙÐØ Ó oÈo Ð ÖÓÒ 3⁄41⁄2 ̧ μ Ø Ø × Ò ÒØ ÖÔÓÐ Ø ÓÒ ×Ô ÓÖ Ø Ò ÓÙÔÐÄ1⁄2 Ä1⁄2μ

ÐÓ ÐÐÝ ÙÒ ÓÖÑÐÝ ÓÒÚ Ü
ÓÒ Ó ÐÓ Ð ÓÒÚ Ö Ò
ÒØμ ØØμ Ø
ÃØ Ü μ
ÃÔØ Üμ ÃÕØ Üμ
ÓÒ Ö
ÓÒÚ Ü
ÙÒ ÓÖÑ
ÒÓÖÑ ÕÙ ÔÔ ÔÖÓÔ ÖØ
ÌÜ Ò
ØÒ ÓÖ ÐÐ Ø
ØÓ Ø ÒÚ
ÓÖÄÍ ÓÖÑÐÝ
ÙÖØ Ö Ø ÕÙ ÒØÐÝ
ÓÖ ÐÐ
ÒÓØ ÓØ
Ìμo Ñ
ÄØ Ò
ÓÖ ÐÐ Ò Æo Ë Ò
ÙÒ ÓÖÑ ÓÒÚ Ü ØÝ Ò Ã

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.