Abstract
We present a systematic study of the interpolation of local uniform convexity and Kadec‐Klee type properties in K‐interpolation spaces. Using properties of the K‐functional of J.Peetre, our approach is based on a detailed analysis of properties of a Banach couple and properties of a K‐interpolation functional which guarantee that a given K‐interpolation space is locally uniformly convex, or has a Kadec‐Klee property. A central motivation for our study lies in the observation that classical renorming theorems of Kadec and of Davis, Ghoussoub and Lindenstrauss have an interpolation nature. As a partiular by‐product of our study, we show that the theorem of Kadec itself, that each separable Banach space admits an equivalent locally uniformly convex norm, follows directly from our approach.
Highlights
ØÓÙ ÔÖÓÔ ÖØÝÌ ÒÓÖÑ ÓÒ × × ØÓ ÓÖ Ö ÓÒØ ÒÙÓÙ× Ò ÓÒÐÝ ÛÒÚÖÒ 3⁄4 Ò 1⁄2 3⁄4 × Ø ×¬ × Ò Ò 1⁄4 ̧ Ø ÓÐÐÓÛ× Ø Ø Ò 1⁄4oÏÖÑÖØØ × ÓÖ Ö ÓÒØ ÒÙÓÙ× ÒÓÖÑ Ø Ò ¡ × ØÓÙ ÒÓÖÑo Á 3⁄4 Ä1⁄4 ́Ì μ Ø Ó Ö × Ò Ö ÖÖ Ò Ñ ÒØ £ × ¬Ò Ý × ØØ Ò.
ÓÖ ÐÐ Ø 1⁄4o Ì Ö ÖÖ Ò Ñ ÒØ £ × Ö Ø1 ÓÒØ ÒÙÓÙ× ̧ Ö × Ò Ò × ÕÙ Ñ ×ÙÖ ÐÛØÒØ × Ò× Ø Ø.
ÓÖ ÐÐ Ø 1⁄4o Á × Ö ÖÖ Ò Ñ ÒØ1 ÒÚ Ö ÒØ Ò ÙÒ Ø ÓÒ ×Ô ÓÒÌ μ Ø Ò Û Û ÐÐ × Ý Ø Ø × ÙÐÐÝ ×ÝÑÑ ØÖ Ò ÓÒÐÝ.
Summary
Ì ÒÓÖÑ ÓÒ × × ØÓ ÓÖ Ö ÓÒØ ÒÙÓÙ× Ò ÓÒÐÝ ÛÒÚÖÒ 3⁄4 Ò 1⁄2 3⁄4 × Ø ×¬ × Ò Ò 1⁄4 ̧ Ø ÓÐÐÓÛ× Ø Ø Ò 1⁄4oÏÖÑÖØØ × ÓÖ Ö ÓÒØ ÒÙÓÙ× ÒÓÖÑ Ø Ò ¡ × ØÓÙ ÒÓÖÑo Á 3⁄4 Ä1⁄4 ́Ì μ Ø Ó Ö × Ò Ö ÖÖ Ò Ñ ÒØ £ × ¬Ò Ý × ØØ Ò. ÓÖ ÐÐ Ø 1⁄4o Ì Ö ÖÖ Ò Ñ ÒØ £ × Ö Ø1 ÓÒØ ÒÙÓÙ× ̧ Ö × Ò Ò × ÕÙ Ñ ×ÙÖ ÐÛØÒØ × Ò× Ø Ø. ÓÖ ÐÐ Ø 1⁄4o Á × Ö ÖÖ Ò Ñ ÒØ1 ÒÚ Ö ÒØ Ò ÙÒ Ø ÓÒ ×Ô ÓÒÌ μ Ø Ò Û Û ÐÐ × Ý Ø Ø × ÙÐÐÝ ×ÝÑÑ ØÖ Ò ÓÒÐÝ. ÑÔÐÝ 3⁄4 Ò o ÁØ × Û ÐÐ1 ÒÓÛÒ Ö ×ÙÐØ Ó oÈo Ð ÖÓÒ 3⁄41⁄2 ̧ μ Ø Ø × Ò ÒØ ÖÔÓÐ Ø ÓÒ ×Ô ÓÖ Ø Ò ÓÙÔÐÄ1⁄2 Ä1⁄2μ
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.