Abstract

The recharging of many-hole and few-electron quantum dots under the conditions of the ballistic transport of single charge carriers inside self-assembled quantum well structures on a Si (100) surface are studied using local tunneling spectroscopy at high temperatures (up to room temperature). On the basis of measurements of the tunneling current-voltage characteristics observed during the transit of single charge carriers through charged quantum dots, the modes of the Coulomb blockade, Coulomb conductivity oscillations, and electronic shell formation are identified. The tunneling current-voltage characteristics also show the effect of quantum confinement and electron-electron interaction on the characteristics of single-carrier transport through silicon quantum wires containing weakly and strongly coupled quantum dots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.